
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.54128 514

Integrity Constraints for Cloud Auditing Services

Using Third Party Services

M. Anantha Lakshmi
1
, Shaik Mahammad Rasheed

2

Asst. Professor, Dept. of CSE, Ravindra College of Engineering for Women, Kurnool, Andhra Pradesh, India
1

PG Scholar, Dept. of CSE, Mahatama Gandhi institute of technology, Hyderabad, Telangana State, India
2

Abstract: Cloud data storage is the main important feature in present dynamic software cloud applications. Thus,

enabling public audit ability for cloud storage is of critical importance so that users can resort to a third party auditor

(TPA) to check the integrity of outsourced data and be worry-free. To securely introduce an effective TPA, the auditing

process should bring in no new vulnerabilities towards user data privacy, and introduce no additional online burden to

user. The TPA to perform audits for multiple users simultaneously and efficiently. Extensive security and performance

analysis show the proposed schemes are provably secure and highly efficient. We propose in this paper a flexible

distributed storage integrity auditing mechanism, utilizing the homomorphic token and distributed erasure-coded data.

The proposed design allows users to audit the cloud storage with very lightweight communication and computation

cost. The auditing result not only ensures strong cloud storage correctness guarantee, but also simultaneously achieves

fast data error localization, i.e., the identification of misbehaving server. Considering the cloud data are dynamic in

nature, the proposed design further supports secure and efficient dynamic operations on outsourced data, including

block modification, deletion, and append. Analysis shows the proposed scheme is highly efficient and resilient against

Byzantine failure, malicious data modification attack, and even server colluding attacks.

Keywords: Data integrity, dependable distributed storage, error localization, data dynamics, cryptographic protocols,

cloud computing.

I. INTRODUCTION

Cloud computing is the delivery of computing services

over the Internet. Cloud services allow individuals and

businesses to use software and hardware that are managed

by third parties at remote locations. Examples of cloud

services include online file storage, social networking

sites, webmail, and online business applications. The

cloud computing model allows access to information and

computer resources from anywhere that a network

connection is available. Cloud computing provides a

shared pool of resources, including data storage space,

networks, computer processing power, and specialized

corporate and user applications.

Cloud Computing has been envisioned as the next-

generation information technology (IT) architecture for

enterprises, due to its long list of unprecedented

advantages in the IT history: on-demand self-service,

ubiquitous network access, location independent resource

pooling, rapid resource elasticity, usage-based pricing and

transference of risk. Moving data into the cloud offers

great convenience to users since they don’t have to care

about the complexities of direct hardware management.

The pioneer of cloud computing vendors, Amazon Simple

Storage Service (S3), and Amazon Elastic Compute Cloud

(EC2) are both well-known examples. While these

internet-based online services do provide huge amounts of

storage space and customizable computing resources, this

computing platform shift, however, is eliminating the

responsibility of local machines for data maintenance at

the same time. As a result, users are at the mercy of their

cloud service providers (CSP) for the availability and

integrity of their data. On the one hand, although the cloud

infrastructures are much more powerful and reliable than

personal computing devices, broad range of both internal

and external threats for data integrity still exist.

Privacy preserving approaches in cloud is an effective and

flexible distributed storage verification scheme with

explicit dynamic data support to ensure the correctness

and availability of users’ data in the cloud. We rely on

erasure correcting code in the file distribution preparation

to provide redundancies and guarantee the data

dependability against Byzantine servers, where a storage

server may fail in arbitrary ways. This construction

drastically reduces the communication and storage

overhead as compared to the traditional replication-based

file distribution techniques. By utilizing the homomorphic

token with distributed verification of erasure-coded data,

our scheme achieves the storage correctness insurance as

well as data error localization: whenever data corruption

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.54128 515

has been detected during the storage correctness

verification, our scheme can almost guarantee the

simultaneous localization of data errors, i.e., the

identification of the misbehaving server(s). In order to

strike a good balance between error resilience and data

dynamics, we further explore the algebraic property of our

token computation and erasure-coded data, and

demonstrate how to efficiently support dynamic operation

on data blocks, while maintaining the same level of

storage correctness assurance. In order to save the time,

computation resources, and even the related online burden

of users, we also provide the extension of the proposed

main scheme to support third-party auditing, where users

can safely delegate the integrity checking tasks to third-

party auditors (TPA) and be worry-free to use the cloud

storage services.

Figure 2: Cloud storage service architecture

Our work is among the first few ones in this field to

consider distributed data storage security in cloud

computing. Our contribution can be summarized as the

following three aspects: 1) Compared to many of its

predecessors, which only provide binary results about the

storage status across the distributed servers, the proposed

scheme achieves the integration of storage correctness

insurance and data error localization, i.e., the identification

of misbehaving server(s). 2) Unlike most prior works for

ensuring remote data integrity, the new scheme further

supports secure and efficient dynamic operations on data

blocks, including: update, delete, and append. 3) The

experiment results demonstrate the proposed scheme is

highly efficient. Extensive security analysis shows our

scheme is resilient against Byzantine failure, malicious

data modification attack, and even server colluding

attacks.

II. RELATED WORK

We consider a cloud data storage service involving three

different entities. Users rely on the CS for cloud data

storage and maintenance. They may also dynamically

interact with the CS to access and update their stored data

for various application purposes. To save the computation

resource as well as the online burden, cloud users may

resort to TPA for ensuring the storage integrity of their

outsourced data, while hoping to keep their data private

from TPA. Representative network architecture for cloud

storage service architecture is illustrated in Fig. 2. Three

different network entities can be identified as follows:

User: an entity, who has data to be stored in the cloud and

relies on the cloud for data storage and computation, can

be either enterprise or individual customers. Cloud Server

(CS): an entity, which is managed by cloud service

provider (CSP) to provide data storage service and has

significant storage space and computation resources (we

will not differentiate CS and CSP hereafter). . Third-Party

Auditor: an optional TPA, who has expertise and

capabilities that users may not have, is trusted to assess

and expose risk of cloud storage services on behalf of the

users upon request. As users no longer possess their data

locally, it is of critical importance to ensure users that their

data are being correctly stored and maintained. That is,

users should be equipped with security means so that they

can make continuous correctness assurance (to enforce

cloud storage service-level agreement) of their stored data

even without the existence of local copies.

Adversary Model

From user’s perspective, the adversary model has to

capture all kinds of threats toward his cloud data integrity.

Because cloud data do not reside at user’s local site but at

CSP’s address domain, these threats can come from two

different sources: internal and external attacks. For

internal attacks, a CSP can be self-interested, untrusted,

and possibly malicious. Not only does it desire to move

data that has not been or is rarely accessed to a lower tier

of storage than agreed for monetary reasons, but it may

also attempt to hide a data loss incident due to

management errors, Byzantine failures, and so on. For

external attacks, data integrity threats may come from

outsiders who are beyond the control domain of CSP, for

example, the economically motivated attackers. They may

compromise a number of cloud data storage servers in

different time intervals and subsequently be able to modify

or delete users’ data while remaining undetected by CSP.

III. ENSURING CLOUD DATA STORAGE

In cloud data storage system, users store their data in the

cloud and no longer possess the data locally. Thus, the

correctness and availability of the data files being stored

on the distributed cloud servers must be guaranteed. One

of the key issues is to effectively detect any unauthorized

data modification and corruption, possibly due to server

compromise and/or random Byzantine failures. Besides, in

the distributed case when such inconsistencies are

successfully detected, to find which server the data error

lies in is also of great significance, since it can always be

the first step fast recover the storage errors or identifying

potential threats of external attacks. To address these

problems, our main scheme ensuring cloud data storage is

presented in this section. The first part of the section is

devoted to a review of basic tools from coding theory that

is needed in our scheme for file distribution across cloud

servers. Then, the homomorphic token is introduced.

File Distribution Preparation

It is well known that erasure-correcting code may be used

to tolerate multiple failures in distributed storage systems.

In cloud data storage, we rely on this technique to disperse

the data file F redundantly across a set of n ¼ m þ k

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.54128 516

distributed servers. An ðm; kÞ Reed-Solomon erasure-

correcting code is used to create k redundancy parity

vectors from m data vectors in such a way that the original

m data vectors can be reconstructed from any m out of the

m þ k data and parity vectors. By placing each of the m þ k

vectors on a different server, the original data file can

survive the failure of any k of the m þ k servers without

any data loss, with a space overhead of k=m. For support

of efficient sequential I/O to the original file, our file

layout is systematic, i.e., the unmodified m data file

vectors together with k parity vectors is distributed across

m þ k different servers.

IV. PROPOSED SCHEME

In order to achieve assurance of data storage correctness

and data error localization simultaneously, our scheme

entirely relies on the precomputed verification tokens.

Upon receiving challenge, each cloud server computes a

short “signature” over the specified blocks and returns

them to the user. The values of these signatures should

match the corresponding tokens precomputed by the user.

Meanwhile, as all servers operate over the same subset of

the indices, the requested response values for integrity

check must also be a valid codeword determined by the

secret matrix P.

Algorithm 1. Token Precomputation.

1: procedure

2: Choose parameters l; n and function f;_;

3: Choose the number t of tokens;

4: Choose the number r of indices per verification;

5: Generate master key KPRP and challenge key kchal;

6: for vector GðjÞ; j 1; n do

7: for round i 1; t do

8: Derive _i ¼ fkchal ðiÞ and kðiÞ prp from KPRP.

9: Compute vðjÞ i ¼ Pr

q¼1 _q

i _ GðjÞ½_kðiÞ prp ðqÞ_

10: end for

11: end for

12: Store all the vi’s locally.

13: end procedure

Figure 3: Precipitation in token generation of cloud

storage system

Error localization is a key prerequisite for eliminating

errors in storage systems. It is also of critical importance

to identify potential threats from external attacks.

A. Correctness Verification and Error Localization

Error localization is a key prerequisite for eliminating

errors in storage systems. It is also of critical importance

to identify potential threats from external attacks.

However, many previous schemes do not explicitly

consider the problem of data error localization, thus only

providing binary results for the storage verification. Our

scheme outperforms those by integrating the correctness

verification and error localization (misbehaving server

identification) in our challenge-response protocol: the

response values from servers for each challenge not only

determine the correctness of the distributed storage, but

also contain information to locate potential data error(s).

Algorithm 2. Correctness Verification and Error

Localization.

1: procedure CHALLENGE(i)

2: Recompute _i ¼ fkchal ðiÞ and kðiÞ prp from KPRP ;

3: Send f_i; kðiÞ prpg to all the cloud servers;

4: Receive from servers:

fRðjÞ i ¼ Pr

q¼1 _q

i _ GðjÞ½_kðiÞ prp ðqÞ_j1 _ j _ ng

5: for ðj m þ 1; nÞ do

6: RðjÞ RðjÞ _Pr

q¼1 fkj ðsIq ;jÞ _ _q

i , Iq ¼ _kðiÞ prp ðqÞ

7: end for

8: if ððRð1Þ i ; . . .;RðmÞ i Þ _ P¼¼ðRðmþ1Þ i ; . .

.;RðnÞ i ÞÞ than

9: Accept and ready for the next challenge.

10: else

11: for (j 1; n) do

12: if ðRðjÞ i ! ¼vðjÞ i Þ than

13: return server j is misbehaving.

14: end if

15: end for

16: end if

17: end procedure

B. File Retrieval and Error Recovery

Since our layout of file matrix is systematic, the user can

reconstruct the original file by downloading the data

vectors from the first m servers, assuming that they return

the correct response values. Notice that our verification

scheme is based on random spot-checking, so the storage

correctness assurance is a probabilistic one. However, by

choosing system parameters ðe:g:; r; l; tÞ appropriately

and conducting enough times of verification, we can

guarantee the successful file retrieval with high

probability. On the other hand, whenever the data

corruption is detected, the comparison of precomputed

tokens and received response values can guarantee the

identification of misbehaving server(s) (again with high

probability), which will be discussed shortly. Therefore,

the user can always ask servers to send back blocks of the

r rows specified in the challenge and regenerate the correct

blocks by erasure correction, shown in Algorithm 3, as

long as the number of identified misbehaving servers is

less than k. (otherwise, there is no way to recover the

corrupted blocks due to lack of redundancy, even if we

know the position of misbehaving servers.) The newly

recovered blocks can then be redistributed misbehaving

servers to maintain the correctness of storage.

Algorithm 3. Error Recovery.

1: procedure

% Assume the block corruptions have been detected

among

% the specified r rows;

% Assume s _ k servers have been identified misbehaving

2: Download r rows of blocks from servers;

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.54128 517

3: Treat s servers as erasures and recover the blocks.

4: Resend the recovered blocks to corresponding servers.

5: end procedure

V. EXPERIMENTAL RESULTS

We now assess the performance of the proposed storage

auditing scheme. We focus on the cost of file distribution

preparation as well as the token generation. Our

experiment is conducted on a system with an Intel Core 2

processor running at 1.86 GHz, 2,048 MB of RAM, and a

7,200 RPM Western Digital 250 GB Serial ATA drive.

File Distribution Preparation

File distribution preparation includes the generation of

parity vectors (the encoding part) as well as the

corresponding parity blinding part. We consider two sets

of different parameters for the ðm; kÞ Reed-Solomon

encoding, both of which work over GFð216Þ. This can be

explained as follows: on the one hand, k determines how

many parity vectors are required before data outsourcing,

and the parity generation cost increases almost linearly

with the growth of k; on the other hand, the growth of k

means the larger number of parity blocks required to be

blinded, which directly leads to more calls to our non

optimized PRF generation in C.

Challenge Token Computation

Although in our scheme the number of verification token t

is a fixed priori determined before file distribution, we can

overcome this issue by choosing sufficient large t in

practice. For example, when t is selected to be 7,300 and

14,600, the data file can be verified every day for the next

20 years and 40 years, respectively, which should be of

enough use in practice. Following the security analysis,

we select a practical parameter r ¼ 460 for our token

precomputation (see Section 5.2.1), i.e., each token covers

460 different indices. Other parameters are along with the

file distribution preparation. Our implementation shows

that the average token precomputation cost is about 0.4ms.

This is significantly faster than the hash function based

token precomputation scheme proposed in [14]. To verify

encoded data distributed over a typical number of 14

servers, the total cost for token precomputation is no more

than 1 and 1.5 minutes, for the next 20 years and 40 years,

respectively. Note that each token is only an element of

field GFð216Þ, the extra storage for those precomputed

tokens is less than 1MB, and thus can be neglected.

VI. CONCLUSION

Consider the process data cloud storage using third party

service provider. We utilize the homomorphic linear

authenticator and random masking to guarantee that the

TPA would not learn any knowledge about the data

content stored on the cloud server during the efficient

auditing process, which not only eliminates the burden of

cloud user from the tedious and possibly expensive

auditing task, but also alleviates the users’ fear of their

outsourced data leakage. The proposed design allows users

to audit the cloud storage with very lightweight

communication and computation cost. The auditing result

not only ensures strong cloud storage correctness

guarantee, but also simultaneously achieves fast data error

localization, i.e., the identification of misbehaving server.

Considering the cloud data are dynamic in nature, the

proposed design further supports secure and efficient

dynamic operations on outsourced data, including block

modification, deletion, and append.

REFERENCES

[1] Wang, Q. Wang, K. Ren, and W. Lou, “Ensuring Data Storage
Security in Cloud Computing,” Proc. 17th Int’l Workshop Quality

of Service (IWQoS ’09), pp. 1-9, July 2009.

[2] Amazon.com, “Amazon Web Services (AWS),” http://aws.

amazon.com, 2009.

[3] M. Arrington, “Gmail disaster: Reports of mass email deletions,”

Online at http://www.techcrunch.com/2006/ 12/28/gmail-
disasterreports-of-mass-email-deletions/, December 2006.

[4] J. Kincaid, “MediaMax/TheLinkup Closes Its Doors,” Online at
ttp://www.techcrunch.com/2008/07/10/ mediamax thelinkup-

closes-its-doors/, July 2008.

[5] Amazon.com, “Amazon s3 availability event: July 20, 2008,”
Online at http://status.aws.amazon.com/s3-20080720.html,2008.

[6] S. Wilson, “Appengine outage,” Online at http://www. cio-

weblog.com/50226711/appengine outage.php, June 2008.
[7] B. Krebs,“Payment Processor Breach May Be Largest Ever,”

Online at http://voices.washingtonpost.com/securityfix/2009/01/

payment processor breach may b.html,Jan 2009.
[8] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.

Peterson, and D. Song, “Provable data possession at untrusted

stores,” in Proc. of CCS’07, Alexandria, VA, October 2007, pp.
598–609.

[9] B. Krebs, “Payment Processor Breach May Be Largest Ever,”

http://voices.washingtonpost.com/securityfix/2009/01/
payment_processor_breach_may_b.html, Jan. 2009.

[10] A.Juels and B.S. Kaliski Jr., “PORs: Proofs of Retrievability for

Large Files,” Proc. 14th ACM Conf. Computer and Comm.
Security (CCS ’07), pp. 584-597, Oct. 2007.

BIOGRAPHIES

Mrs. M. Anantha Lakshmi has

completed B.Tech in Computer Science

and Information Technology from G.

Pulla Reddy Engineering College

(Autonomous), affiliated to SKU,

Kurnool, in the year 2012 and Completed

her M. Tech from G. Pulla Reddy

Engineering College (Autonomous), affiliated to JNTUA,

Kurnool, in the year 2014. Presently she is working as

Asst. Professor in the Department of Computer Science &

Engineering at Ravindra College of Engineering for

Women, Kurnool. She has presented two international

journals so far her research areas include Cloud

Computing.

 Mr. Shaik Mahammad Rasheed

obtained his B.Tech degree from Kottam

College of Engineering, Kurnool and

M.Tech degree from Mahatama Gandhi

Institute of Technology, Hyderabad in the

year 2012 and 2014 respectively. He has

presented two international journals so far

his research areas include Computer Networks and

Network Security.

http://aws/
http://www.techcrunch.com/2006/
http://www/
http://voices.washingtonpost.com/securityfix/
http://voices.washingtonpost.com/securityfix/2009/01/

